FAQ: How much more electricity will I use if I switch to an electric dryer or oven/stove?

FAQ_icon

Many people looking to go solar want to take full advantage of solar as a source of clean, low-cost energy. This includes “electrifying” their lives by switching from gas to electric clothes dryers or electric stoves and ovens.

Efficiency Vermont provides estimates for the amount of electricity used by different sorts of appliances. They estimate that electric clothes dryers and electric stoves each use approximately 900 kWh per year, in the typical home. For Green Mountain Power customers, as an example, that works out to about $11 more on the electric bill per month for each appliance. Read more

FAQ: How much more electricity will I use if I drive an electric car?

FAQ_icon

Driving an electric vehicle is an efficient way to get around, both in terms of energy and money. DriveElectricVT estimates that the cost to drive an electric vehicle—either all-electric or a plug-in hybrid—is equivalent to driving a gasoline car if gas is running at about $1 per gallon. And the cost for electricity is a lot more stable over time than the cost of gasoline.

If you are thinking about driving on electricity now or in the relatively near future, you may wonder about covering your electric vehicle’s needs with solar. The average American driver drives 13,476 miles per year, according to the Federal Highway Administration. An electric vehicle uses around 1/3rd of a kWh to drive 1 mile. That means to drive the average distance of 13,476 miles in a year, the car will go through 4,463 kWh. This is roughly 2/3rds to 3/4ths of the electric output of one Solaflect PV Tracker in Vermont or New Hampshire, depending on the Tracker’s location.

See more FAQs here, or quickly jump to electric use by heat pumps or household appliances.

FAQ: Can I mow under the Tracker?

FAQ_icon

Yes, you can mow under your Tracker. Your working space under the Tracker will depend on the time of day and day of year. That’s because the panels are tilted to face directly at the sun, and as the sun travels the tilt of the panels changes. As a result, the amount of space underneath the lowest edge of the panels changes.

When the Tracker is in the vertical position before sunrise and after sunset, the bottom edge of the panels is approximately 4 ft above the ground. You could easily mow under that with a push mower, but you’d risk collision if you were using a riding mower.

Of course, most mowing occurs during the day. On the Spring and Autumn equinoxes (on or about March and September 20th), the Tracker is tilted enough that the clearance beneath the panels is 5 ft or more from about 10:15 am through 3:45 pm. By Summer Solstice, you’ve got 5 ft or more of clearance from about 8:30 am through 5:15 pm.

See more FAQs here.

FAQ: How does solar production vary over the year?

FAQ_icon

Aka, take a ride on the Solar Coaster!

The amount of electricity generated by a PV Tracker varies greatly from month to month. Days in December (in Vermont and New Hampshire) are much shorter than in June. In December, each day lasts only about 9 hours. In June, each day lasts more than 15¼ hours, 70 percent longer than December’s day length. Read more

FAQ: Does northern New England get enough sunlight for solar to make sense?

FAQ_icon

The grass is always greener on the other side, and the sun always shines brighter in retirement states. Even so, Vermont and New Hampshire have no trouble sustaining healthy yards and pastures, and we easily get enough sunshine for solar to be a sensible choice for energy production.

Consider this map of the solar resource, created by the National Renewable Energy Lab: Read more

FAQ: What does solar do to property values and property taxes?

FAQ_icon

Many homeowners wonder what will happen to their home’s property value if they add solar. A number of studies have looked at this question. The largest and most thorough to date was conducted by the Lawrence Berkeley National Lab and published in January 2015. It looked at data from eight states over a fifteen year time period. On average, home values increased by $4 per watt of installed solar capacity. One Solaflect PV Tracker has 4 kW (4,000 watts) of capacity. See the report here.

Note that in Vermont, state law exempts solar equipment from being assessed for property taxation, so long as the solar array is smaller than 50 kW in size (that is, fewer than 13 Solaflect PV Trackers).

In New Hampshire, each town has the option to exempt solar from property taxation. Details regarding the towns that have adopted an exemption are available here. New Hampshire residents interested in solar should contact their local government to confirm the exact details for their town.

See more FAQs here.

FAQ: What are “Renewable Energy Certificates”?

FAQ_icon

Renewable Energy Certificates (RECs) are an accounting mechanism to make it possible to keep track of responsibility for bringing renewable energy to the grid. When one megawatt-hour (MWh) of electricity is generated from a renewable energy facility that is registered with the grid operator, a REC is issued to represent the renewable aspect of that energy.

Electricity on the grid is identical, whether it comes from a solar array or a coal-fired power plant. But we all know that energy from the sun has a different impact on the world than energy from burning coal. The REC represents that difference. It represents the reduction in soot, mercury, smog, acid rain, radiation, and carbon dioxide that we get from solar (or other renewable) energy as compared to traditional sources. Because we want a cleaner, healthier world, there is social value in the difference represented by the REC. Read more

FAQ: How large is a Tracker?

FAQ_icon

A Solaflect PV Tracker carries 16 solar panels. As a group, they cover an area of 20 feet wide by 12 feet high. The riser holds them up a few feet off the ground so that it won’t be a snow plow as it rotates in wintertime.

The space the Tracker takes up visually depends on the time of day and season. If it is vertical (for example before sunrise and after sunset) and facing directly at the viewer, it looks at its largest. Read more